logo

A Light-based technologies for management of COVID-19 pandemic

PDF Publication Title:

A Light-based technologies for management of COVID-19 pandemic ( a-light-based-technologies-management-covid-19-pandemic )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

C.P. Sabino, et al. Journal of Photochemistry & Photobiology, B: Biology 212 (2020) 111999 [48] M. Lim, Y.L. Lee, Y. Zhang, J.J. Chu, Photodynamic inactivation of viruses using upconversion nanoparticles, Biomaterials 33 (2012) 1912–1920. [49] A. Wiehe, J.M. O’Brien, M.O. Senge, Trends and targets in antiviral phototherapy, Photochem Photobiol Sci 18 (2019) 2565–2612. [50] L. Sobotta, P. Skupin-Mrugalska, J. Mielcarek, T. Goslinski, J. Balzarini, Photosensitizers mediated photodynamic inactivation against virus particles, Mini Rev Med Chem 15 (2015) 503–521. [51] Y. Arenas, S. Monro, G. Shi, A. Mandel, S. McFarland, L. Lilge, Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers, Photodiagn. Photodyn. Ther. 10 (4) (2013) 615–625. [52] M.S. Baptista, J. Cadet, P. Di Mascio, et al., Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways, Photochem. Photobiol. 93 (4) (2017) 912–919. [53] M. Wainwright, T. Maisch, S. Nonell, et al., Photoantimicrobials-are we afraid of the light? Lancet Infect. Dis. 17 (2017) e49–e55. [54] J.P. Tardivo, M. Wainwright, M.S. Baptista, Local clinical phototreatment of herpes infection in Sao Paulo, Photodiagn. Photodyn. Ther. 9 (2) (2012) 118–121. [55] M.J. Shikowitz, A.L. Abramson, K. Freeman, B.M. Steinberg, M. Nouri, Efficacy of DHE photodynamic therapy for respiratory papillomatosis: immediate and long- term results, Laryngoscope 108 (7) (1998) 962–967. [56] M.J. Casteel, K. Jayaraj, A. Gold, L.M. Ball, M.D. Sobsey, Photoinactivation of hepatitis A virus by synthetic porphyrins, Photochem. Photobiol. 80 (2) (2004) 294–300. [57] E. Blazquez, C. Rodriguez, J. Rodenas, et al., UV-C irradiation is able to inactivate pathogens found in commercially collected porcine plasma as demonstrated by swine bioassay, Vet. Microbiol. 239 (2019) 108450. [58] M. Eickmann, U. Gravemann, W. Handke, et al., Inactivation of three emerging viruses - severe acute respiratory syndrome coronavirus, Crimean-Congo hae- morrhagic fever virus and Nipah virus - in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang, Crimean-Congo haemorrhagic fever virus and Nipah virus - in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang, (2020). [59] M. Wainwright, Pathogen inactivation in blood products, Curr. Med. Chem. 9 (1) (2002) 127–143. [60] L. Marciel, L. Teles, B. Moreira, et al., An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers, Future Med. Chem. 9 (4) (2017) 365–379. [61] S.J. Wagner, Virus inactivation in blood components by photoactive phenothia- zine dyes, Transfus. Med. Rev. 16 (1) (2002) 61–66. [62] M.M. Judy, Photodynamic inactivation of enveloped viruses: potential application for blood banking, J. Clin. Laser Med. Surg. 8 (4) (1990) 49–52. [63] L. Costa, M.A. Faustino, M.G. Neves, A. Cunha, A. Almeida, Photodynamic in- activation of mammalian viruses and bacteriophages, Viruses 4 (7) (2012) 1034–1074. [64] R.A. Floyd, J.E. Schneider, D.P. Dittmer, Methylene blue photoinactivation of RNA viruses, Antivir. Res. 61 (3) (2004) 141–151. [65] L. Costa, J.P. Tomé, M.G. Neves, et al., Susceptibility of non-enveloped DNA- and RNA-type viruses to photodynamic inactivation, Photochem Photobiol Sci 11 (10) (2012) 1520–1523. [66] H. Abe, S.J. Wagner, Analysis of viral DNA, protein and envelope damage after methylene blue, phthalocyanine derivative or merocyanine 540 photosensitiza- tion, Photochem. Photobiol. 61 (4) (1995) 402–409. [67] J.E. Schneider, T. Tabatabaie, L. Maidt, et al., Potential mechanisms of photo- dynamic inactivation of virus by methylene blue. I. RNA-protein crosslinks and other oxidative lesions in Q beta bacteriophage, Photochem. Photobiol. 67 (3) (1998) 350–357. [68] S. Rywkin, E. Ben-Hur, Z. Malik, et al., New phthalocyanines for photodynamic virus inactivation in red blood cell concentrates, Photochem. Photobiol. 60 (2) (1994) 165–170. [69] F. Kasermann, C. Kempf, Photodynamic inactivation of enveloped viruses by buckminsterfullerene, Antivir. Res. 34 (1) (1997) 65–70. [70] E. Steinmann, U. Gravemann, M. Friesland, et al., Two pathogen reduction tech- nologies–methylene blue plus light and shortwave ultraviolet light–effectively inactivate hepatitis C virus in blood products, Transfusion 53 (5) (2013) 1010–1018. [71] S. Jockusch, D. Lee, N.J. Turro, E.F. Leonard, Photo-induced inactivation of viruses: adsorption of methylene blue, thionine, and thiopyronine on Qbeta bac- teriophage, Proc. Natl. Acad. Sci. U. S. A. 93 (15) (1996) 7446–7451. [72] S.J. Wagner, A. Skripchenko, D. Robinette, J.W. Foley, L. Cincotta, Factors af- fecting virus photoinactivation by a series of phenothiazine dyes, Photochem. Photobiol. 67 (3) (1998) 343–349. [73] D. Korneev, O. Kurskaya, K. Sharshov, J. Eastwood, Strakhovskaya M. Ultrastructural Aspects of Photodynamic Inactivation of Highly Pathogenic Avian H5N8 Influenza Virus, Viruses (2019) 11(10). [74] I.O.L. Bacellar, M.C. Oliveira, L.S. Dantas, et al., Photosensitized Membrane Permeabilization Requires Contact-Dependent Reactions between Photosensitizer and Lipids, J. Am. Chem. Soc. 140 (30) (2018) 9606–9615. [75] I.O.L. Bacellar, M.S. Baptista, Mechanisms of Photosensitized Lipid Oxidation and Membrane Permeabilization, ACS Omega 4 (26) (2019) 21636–21646. [76] J. Kurman, N. Pastis, S. Murgu, Photodynamic Therapy and Its Use in Lung Disease, Current Pulmonology Reports 8 (2019) 215–221. [77] P. Agostinis, K. Berg, K.A. Cengel, et al., Photodynamic therapy of cancer: an update, CA Cancer J. Clin. 61 (4) (2011) 250–281. [78] M.C. Geralde, I.S. Leite, N.M. Inada, et al., Pneumonia treatment by photodynamic therapy with extracorporeal illumination - an experimental model, Physiol Rep (2017) 5(5). [79] R.B. Soares, D.H. Costa, W. Miyakawa, et al., Photodynamic activity on biofilm in endotracheal tubes of patients admitted to an intensive care unit, Photochem. Photobiol. (2020), https://doi.org/10.1111/php.13239. [80] D. Schikora, J. Hepburn, S.R. Plavin, Reduction of the viral load by non-invasive photodynamic therapy in early stages of COVID-19 infection, American Journal of Virology & Disease 2 (1) (2020) 01–05. [81] N.E. Eleraky, A. Allam, S.B. Hassan, M.M. Omar, Nanomedicine fight against an- tibacterial resistance: an overview of the recent pharmaceutical innovations, Pharmaceutics (2020) 12(2). [82] R. Yin, T. Agrawal, U. Khan, et al., Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs, Nanomedicine (Lond) 10 (15) (2015) 2379–2404. [83] E. Tegou, M. Magana, A.E. Katsogridaki, et al., Terms of endearment: Bacteria meet graphene nanosurfaces, Biomaterials 89 (2016) 38–55. [84] Y. Wang, X. Wu, J. Chen, et al., Antimicrobial Blue Light Inactivation of Gram- Negative Pathogens in Biofilms: In Vitro and In Vivo Studies, J. Infect. Dis. 213 (9) (2016) 1380–1387. [85] R.M. Amin, B. Bhayana, M.R. Hamblin, T. Dai, Antimicrobial blue light inactiva- tion of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies, Lasers Surg. Med. 48 (5) (2016) 562–568. [86] F. Cieplik, A. Spath, C. Leibl, et al., Blue light kills Aggregatibacter actinomyce- temcomitans due to its endogenous photosensitizers, Clin. Oral Investig. 18 (7) (2014) 1763–1769. [87] T. Dai, A. Gupta, C.K. Murray, M.S. Vrahas, G.P. Tegos, M.R. Hamblin, Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist. Updat. 15 (4) (2012) 223–236. [88] R.M. Tomb, T.A. White, J.E. Coia, J.G. Anderson, S.J. MacGregor, M. Maclean, Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light, Photochem. Photobiol. 94 (3) (2018) 445–458. [89] S.E. Bache, M. Maclean, S.J. MacGregor, et al., Clinical studies of the High- Intensity Narrow-Spectrum light Environmental Decontamination System (HINS- light EDS), for continuous disinfection in the burn unit inpatient and outpatient settings, Burns 38 (1) (2012) 69–76. [90] M. Maclean, M. Booth, J. Anderson, et al., Continuous Decontamination of an Intensive Care Isolation Room during Patient Occupancy Using 405 Nm Light Technology, J. Infect. Prev. 14 (5) (2013) 176–181. [91] L.J. Murrell, E.K. Hamilton, H.B. Johnson, M. Spencer, Influence of a visible-light continuous environmental disinfection system on microbial contamination and surgical site infections in an orthopedic operating room, Am. J. Infect. Control 47 (7) (2019) 804–810. [92] D. Kingsley, R. Kuis, R. Perez, et al., Oxygen-dependent laser inactivation of murine norovirus using visible light lasers, Virol. J. 15 (1) (2018) 117. [93] Y. Wang, C.K. Murray, M.R. Hamblin, D.C. Hooper, T. Dai, Antimicrobial blue light inactivation of pathogenic microbes: State of the art, Drug Resist. Updat. 33- 35 (2017) 1–22. [94] R.M. Tomb, M. Maclean, J.E. Coia, et al., New Proof-of-Concept in Viral Inactivation: Virucidal Efficacy of 405¬†nm Light Against Feline Calicivirus as a Model for Norovirus Decontamination, Food Environ Virol 9 (2) (2017) 159–167. [95] R.M. Tomb, M. Maclean, P.R. Herron, P.A. Hoskisson, S.J. MacGregor, J.G. Anderson, Inactivation of Streptomyces phage C31 by 405 nm light: Requirement for exogenous photosensitizers? Bacteriophage 4 (2014) e32129. [96] N.S. Soukos, J. Stultz, A.D. Abernethy, J.M. Goodson, Phototargeting human periodontal pathogens in vivo, Lasers Med. Sci. 30 (3) (2015) 943–952. [97] E. Genina, V. Titorenko, A. Belikov, A. Bashkatov, V. Tuchin, Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing, J. Biomed. Opt. 20 (12) (2015) 128004. [98] S. Ammad, M. Gonzales, C. Edwards, A.Y. Finlay, C. Mills, An assessment of the efficacy of blue light phototherapy in the treatment of acne vulgaris, J. Cosmet. Dermatol. 7 (3) (2008) 180–188. [99] P. Yang, N. Wang, C. Wang, et al., 460nm visible light irradiation eradicates MRSA via inducing prophage activation, J. Photochem. Photobiol. B 166 (2017) 311–322. [100] T. Dai, A. Gupta, Y.Y. Huang, et al., Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of ac- tion, Antimicrob. Agents Chemother. 57 (3) (2013) 1238–1245. [101] M. Fukui, M. Yoshioka, K. Satomura, H. Nakanishi, M. Nagayama, Specific-wa- velength visible light irradiation inhibits bacterial growth of Porphyromonas gingivalis, J. Periodontal Res. 43 (2) (2008) 174–178. [102] N.S. Soukos, S. Som, A.D. Abernethy, et al., Phototargeting oral black-pigmented bacteria, Antimicrob. Agents Chemother. 49 (4) (2005) 1391–1396. [103] W. Liu, H. Li, COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism, (2020) Available at https:// chemrxiv.org/ndownloader/files/22283226. [104] L.F. de Freitas, M.R. Hamblin, Proposed mechanisms of photobiomodulation or low-level light therapy, IEEE J Sel Top Quantum Electron (2016) 22(3). [105] T. Karu, Primary and secondary mechanisms of action of visible to near-IR ra- diation on cells, J. Photochem. Photobiol. B 49 (1) (1999) 1–17. [106] H. Chung, T. Dai, S.K. Sharma, Y.Y. Huang, J.D. Carroll, M.R. Hamblin, The nuts and bolts of low-level laser (light) therapy, Ann. Biomed. Eng. 40 (2) (2012) 516–533. [107] M.R. Hamblin, Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation, Photochem. Photobiol. 94 (2) (2018) 199–212. [108] M. Da-Palma-Cruz, R.F. da Silva, D. Monteiro, et al., Photobiomodulation mod- ulates the resolution of inflammation during acute lung injury induced by sepsis, 7

PDF Image | A Light-based technologies for management of COVID-19 pandemic

a-light-based-technologies-management-covid-19-pandemic-007

PDF Search Title:

A Light-based technologies for management of COVID-19 pandemic

Original File Name Searched:

light-based-covid-pandemic-management.pdf

DIY PDF Search: Google It | Yahoo | Bing

Cruise Ship Reviews | Luxury Resort | Jet | Yacht | and Travel Tech More Info

Cruising Review Topics and Articles More Info

Software based on Filemaker for the travel industry More Info

The Burgenstock Resort: Reviews on CruisingReview website... More Info

Resort Reviews: World Class resorts... More Info

The Riffelalp Resort: Reviews on CruisingReview website... More Info

CONTACT TEL: 608-238-6001 Email: greg@cruisingreview.com | RSS | AMP