Low-level light therapy of the eye and brain

PDF Publication Title:

Low-level light therapy of the eye and brain ( low-level-light-therapy-eye-and-brain )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

Dovepress Low-level light therapy hormetic responses in neurons that may be beneficial for neurotherapeutic purposes. Beneficial in vivo effects of LLLT on the eye have been found in optic nerve trauma, methanol intoxication, optic neuropathy, retinal injury, retinitis pigmen- tosa, phototoxicity, and age-related macular degeneration. Beneficial in vivo transcranial effects of LLLT on the brain have been observed in anoxic brain injury, atherothrombotic stroke, embolic stroke, ischemic stroke, acute traumatic brain injury, chronic traumatic brain injury, neurodegeneration, age-related memory loss, and cognitive and mood disorders. No adverse side effects have been reported in these beneficial applications of LLLT in animals and humans. The authors conclude that LLLT is a safe and beneficial approach, based on scientifically sound mechanisms of action of red to near- infrared light on cytochrome oxidase, with neurotherapeutic promise for a wide range of ophthalmological, neurological, and psychological conditions. Disclosure The authors report no conflicts of interest in this work. References 1. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR. Role of low-level laser therapy in neurorehabilitation. Pm R. 2010;2(12 Suppl 2):S292–S305. 2. Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT. Biostimulatory windows in low-intensity laser activation: lasers, scan- ners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg. 2001;19(1):29–33. 3. Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008;84(5):1091–1099. 4. Morton CA, McKenna KE, Rhodes LE. Guidelines for topical photo- dynamic therapy: update. Br J Dermatol. 2008;159(6):1245–1266. 5. Fork RL. Laser stimulation of nerve cells in Aplysia. Science. 1971;171(974):907–908. 6. Hamblin MR, Demidova TN. Mechanisms of low level light therapy. Proc SPIE. 2006;6140:1–12. 7. Sutherland JC. Biological effects of polychromatic light. Photochem Photobiol. 2002;76(2):164–170. 8. Eells JT, Wong-Riley MT, VerHoeve J, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–567. 9. Wong-Riley MT, Liang HL, Eells JT, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280(6):4761–4771. 10. Calabrese EJ, Stanek EJ 3rd, Nascarella MA, Hoffmann GR. Hormesis predicts low-dose responses better than threshold models. Int J Toxicol. 2008;27(5):369–378. 11. Yu W, Naim JO, Lanzafame RJ. The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol. 1994;59(2):167–170. 12. EellsJT,HenryMM,SummerfeltP,etal.Therapeuticphotobiomodula- tion for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003;100(6):3439–3444. 13. Lectures N. Physiology or Medicine 1903 – Presentation Speech. In: Nobelprize.org, editor; 2011. Available from: http://www.nobelprize. org/nobel_prizes/medicine/laureates/1903/press.html. Accessed October 6, 2011. Eye and Brain 2011:3 14. Santana-Blank L, Rodriguez-Santana E, Santana-Rodriguez K. Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed Laser Surg. 2010;28 Suppl 1:S41–S52. 15. Chiaravalloti F, Gross L, Rieder KH, et al. A rack-and-pinion device at the molecular scale. Nat Mater. 2007;6(1):30–33. 16. Karu TI, Pyatibrat LV, Moskvin SV, Andreev S, Letokhov VS. Elementary processes in cells after light absorption do not depend on the degree of polarization: implications for the mechanisms of laser phototherapy. Photomed Laser Surg. 2008;26(2):77–82. 17. Benarroch EE. The melanopsin system: Phototransduction, projections, functions, and clinical implications. Neurology. 2011;76(16):1422–1427. 18. BellinghamJ,ChaurasiaSS,MelyanZ,etal.Evolutionofmelanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol. 2006;4(8):e254. 19. Okano T, Yoshizawa T, Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994;372(6501):94–97. 20. Karu TI. Molecular mechanism of the therapeutic effect of low intensity laser radiation. Lasers Life Sci. 1988;2:53–74. 21. KaruT.Primaryandsecondarymechanismsofactionofvisibletonear-IR radiation on cells. J Photochem Photobiol B. 1999;49(1):1–17. 22. Kubota S, Yang JT. Bis[cyclo(histidylhistidine)]copper(II) complex that mimicks the active center of superoxide dismutase has its catalytic activity. Proc Natl Acad Sci USA. 1984;81(11):3283–3286. 23. Kato M, Shinizawa K, Yoshikawa S. Cythochrome oxidase is a possible photoreceptor in mitochondria. Photobiochem Photobiophys. 1981;2:263–269. 24. Karu T. Mechanisms of low-power laser light action on cellular level. Proc SPIE. 2000;4159:1–17. 25. Karu T. Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B. 1989;3(4):638–640. 26. Pastore D, Greco M, Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol. 2000;76(6):863–870. 27. Yamanaka T, Fukumori Y, Numata M, Yamazaki T. The variety of molecular properties of bacterial cytochromes containing heme a. Ann N Y Acad Sci. 1988;550:39–46. 28. Wong-Riley M. Energy metabolism of the visual system. Eye and Brain. 2010;2:99–116. 29. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. 30. Sakata JT, Crews D, Gonzalez-Lima F. Behavioral correlates of differences in neural metabolic capacity. Brain Res Brain Res Rev. 2005;48(1):1–15. 31. Wong-Riley MT. Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 1989;12(3):94–101. 32. Karu TI, Pyatibrat LV, Kalendo GS, Esenaliev RO. Effects of mono- chromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. Lasers Surg Med. 1996;18(2):171–177. 33. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of cell monolayers relevant to mechanisms of laser pho- totherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed Laser Surg. 2008;26(6):593–599. 34. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358–383. 35. Karu T. Mitochondrial mechanisms of photobiomodulation in con- text of new data about multiple roles of ATP. Photomed Laser Surg. 2010;28(2):159–160. 36. Wong-Riley MT, Bai X, Buchmann E, Whelan HT. Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport. 2001;12(14):3033–3037. 37. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F. In vivo low-level light therapy increases cytochrome oxi- dase in skeletal muscle. Photochem Photobiol. 2010;86(3):673–680. 38. Liang HL, Whelan HT, Eells JT, et al. Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscience. 2006;139(2):639–649. submit your manuscript | www.dovepress.com Dovepress 65

PDF Image | Low-level light therapy of the eye and brain

PDF Search Title:

Low-level light therapy of the eye and brain

Original File Name Searched:

Low-level_light_therapy_of_the_eye_and_brain.pdf

DIY PDF Search: Google It | Yahoo | Bing

Cruise Ship Reviews | Luxury Resort | Jet | Yacht | and Travel Tech More Info

Cruising Review Topics and Articles More Info

Software based on Filemaker for the travel industry More Info

The Burgenstock Resort: Reviews on CruisingReview website... More Info

Resort Reviews: World Class resorts... More Info

The Riffelalp Resort: Reviews on CruisingReview website... More Info

CONTACT TEL: 608-238-6001 Email: greg@cruisingreview.com (Standard Web Page)