logo

Light as a potential treatment for pandemic coronavirus infections

PDF Publication Title:

Light as a potential treatment for pandemic coronavirus infections ( light-as-potential-treatment-pandemic-coronavirus-infections )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

C.S. Enwemeka, et al. Journal of Photochemistry & Photobiology, B: Biology 207 (2020) 111891 [40] K. McKenzie, M. Maclean, I.V. Timoshkin, S.J. MacGregor, J.G. Anderson, Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions, Int. J. Food Microbiol. 170 (2013) 91–98. [41] M.A. Mussi, J.A. Gaddy, M. Cabruja, B.A. Arivett, A.M. Viale, R. Rasia, L.A. Actis, The opportunistic human pathogen Acinetobacter baumannii senses and responds to light, J. Bacteriol. 192 (24) (2010) 6336–6345. [42] M. Maclean, S.J. MacGregor, J.G. Anderson, G. Woolsey, High-intensity narrow- spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus, FEMS Microbiol. Lett. 285 (2008) 227–232. [43] M. Maclean, S.J. MacGregor, J.G. Anderson, G. Woolsey, Inactivation of bacterial pathogens following exposure to light from a 405 nanometer light-emitting diode array, Appl. Environ. Microbiol. 75 (2009) 1932–1937. [44] T. Dai, G.P. Tegos, T. Zhiyentayev, E. Mylonakis, M.R. Hamblin, Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model, Lasers Surg. Med. 42 (2010) 1–14. [45] T. Dai, A. Gupta, Y.Y. Huang, R. Yin, C.K. Murray, M.S. Vrahas, M.E. Sherwood, G.P. Tegos, M.R. Hamblin, Blue light rescues mice from potentially fatal pseudo- monas aeruginosa burn infection: efficacy, safety, and mechanism of action, Antimicrob. Agents Chemother. 57 (2013) 1238–1245. [46] F. Cieplik, A. Spath, C. Leibl, A. Gollmer, J. Regensburger, L. Tabenski, K.A. Hiller, T. Maisch, G. Schmalz, Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers, Clin. Oral Investig. 18 (2014) 1763–1769. [47] H. Ashkenazi, Z. Malik, Y. Harth, Y. Nitzan, Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light, FEMS Immunol. Med. Microbiol. 35 (2003) 17–24. [48] Y. Wang, R. Ferrer-Espada, Y. Baglo, Y. Gu, T. Dai, Antimicrobial blue light in- activation of Neisseria gonorrhoeae: roles of wavelength, endogenous photo- sensitizer, oxygen, and reactive oxygen species, Lasers Surg. Med. 51 (2019) 815–823. [49] Y. Wang, R. Ferrer-Espada, Y. Gu, T. Dai, Antimicrobial blue light: An alternative therapeutic for multidrug-resistant gonococcal infections? MOJ Sol. Photoenergy Syst. 1 (2) (2017) 00009. [50] Y. Wang, R. Ferrer-Espada, Y. Baglo, X.S. Goh, K.D. Held, Y.H. Grad, Y. Gu, J.A. Gelfand, T. Dai, Photoinactivation of Neisseria gonorrhoeae: A paradigm-chan- ging approach for combating antibiotic-resistant gonococcal infection, J. Infect. Dis. 220 (2019) 873–881. [51] O. Feuerstein, N. Persman, E.I. Weiss, Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum, an in vitro study, Photochem. Photobiol. 80 (2004) 412–415. [52] A. Yoshida, H. Sasaki, T. Toyama, M. Araki, J. Fujioka, K. Tsukiyama, N. Hamada, F. Yoshino, Antimicrobial effect of blue light using Porphyromonas gingivalis pigment, Sci. Rep. 7 (2017) 5225. [53] H.W. Song, J.K. Lee, H.S. Um, B.S. Chang, S.Y. Lee, M.K. Lee, Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens, J. Periodontal. Implant Sci. 43 (2013) 72–78. [54] M. Maclean, M.G. Booth, J.G. Anderson, S.J. MacGregor, G.A. Woolsey, J.E. Coia, K. Hamilton, G. Gettinby, Continuous decontamination of an intensive care isola- tion room during patient occupancy using 405 nm light technology, J. Infect. Prev. 14 (2013) 176–181. [55] M. Maclean, S.J. Macgregor, J.G. Anderson, G.A. Woolsey, J.E. Coia, K. Hamilton, I. Taggart, S.B. Watson, G. Gettinby, Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light, J. Hosp. Infect. 76 (2010) 247–251. [56] M. Maclean, J.G. Anderson, S.J. MacGregor, T. White, C.D. Atreya, A new proof of concept in bacterial reduction: antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma, J. Blood Transf. (2016) 1–11, https://doi.org/10.1155/2016/ 2920514. [57] F.D. Halstead, Z. Ahmed, J.R.B. Bishop, B.A. Oppenheim, The potential of visible blue light (405 nm) as a novel decontamination strategy for carbapenemase-pro- ducing enterobacteriaceae (CPE), Antimicrob. Resist. Infect. Control 8 (2019) 14 https://doi.org/10.1186/s13756-019-0470-1. [58] F.D. Halstead, J.E. Thwaite, R. Burt, T.R. Laws, M. Raguse, R. Moeller, M.A. Weber, B.A. Oppenheim, Antibacterial activity of blue light against nosocomial wound pathogens growing Planktonically and as mature biofilms, Appl. Environ. Microbiol. 82 (2016) 4006–4016 https://doi.org/10.1128/AEM.00756-16. [59] K.I. Møller, B. Kongshoj, P.A. Philipsen, V.O. Thomsen, H.C. Wulf, How Finsen’s light cured lupus vulgaris, Photodermatol. Photoimmunol. Photomed. 21 (2005) 118–124. [60] S. Shany-Kdoshim, D. Polak, Y. Houri-Haddad, O. Feuerstein, Killing mechanism of bacteria within multi-species biofilm by blue light, J. Oral Microbiol. 11 (2019) 1–10. [61] Y. Wang, Y. Wang, Y. Wang, C.K. Murray, H.R. Hamblin, D.C. Hooper, T. Dai, Antimicrobial blue light inactivation of pathogenic microbes: state of the art, Drug Resist. Updat. 33–35 (2017) 1–22. [62] E. Aboualizadeh, V.V. Bumah, D.S. Masson-Meyers, J.T. Eells, C.J. Hirschmugl, C.S. Enwemeka, Infrared microspectroscopy study: understanding the antimicrobial activity of selected disinfectants against methicillin-resistant Staphylococcus aureus (MRSA), PLoS One 12 (10) (2017) e0186375. [63] J. Schmid, K. Hoenes, P. Vatter, M. Hessling, Antimicrobial effect of visible light—photoinactivation of Legionella rubrilucens by irradiation at 450, 470, and 620 nm, Antibiotics 8 (4) (2019) 187 https://doi.org/10.3390/antibiotics8040187. [64] G. Biener, D. Masson-Meyers, V. Bumah, G. Hussey, M. Stoneman, C.S. Enwemeka, V. Raicu, Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential, J. Photochem. Photobiol. B 170 (2017) 118–124. [65] I. Szundi, G.L. Liao, O. Einarsdottir, Near-infrared time-resolved optical absorption studies of the reaction of fully reduced cytochrome c oxidase with dioxygen, Biochem. 40 (2001) 2332–2339. [66] T.I. Karu, S.F. Kolyakov, Exact action spectra for cellular responses relevant to phototherapy, Photomed. Laser Surg. 23 (2005) 355–361. [67] S. Passarella, E. Casamassima, S. Molinari, D. Pastore, E. Quagliariello, I.M. Catalano, A. Cingolani, Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser, FEBS Lett. 175 (1984) 95–99. [68] M. Greco, G. Guida, E. Perlino, E. Marra, E. Quagliariello, Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser, Biochem. Biophys. Res. Commun. 163 (1989) 1428–1434. [69] D. Pastore, M. Greco, V.A. Petragallo, S. Passarella, Increase in < –H+/e- ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser, Biochem. Mol. Biol. Int. 34 (1994) 817–826. [70] W. Yu, J.O. Naim, M. McGowan, K. Ippolito, R.J. Lanzafame, Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria, Photochem. Photobiol. 66 (1997) 866–871. [71] G.A. Callaghan, C. Riordan, W.S. Gilmore, I.A. McIntyre, J.M. Allen, B.M. Hannigan, Reactive oxygen species inducible by low-intensity laser irradiation alter DNA synthesis in the haemopoietic cell line U937, Lasers Surg. Med. 19 (1996) 201–206. [72] N. Grossman, N. Schneid, H. Reuveni, S. Halevy, R. Lubart, 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involve- ment of reactive oxygen species, Lasers Surg. Med. 22 (1998) 212–218. [73] R. Lavi, A. Shainberg, H. Friedmann, V. Shneyvays, O. Rickover, M. Eichler, D. Kaplan, R. Lubart, Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells, J. Biol. Chem. 278 (2003) 40917–40922. [74] R. Lubart, M. Eichler, R. Lavi, H. Friedman, A. Shainberg, Low-energy laser irra- diation promotes cellular redox activity, Photomed. Laser Surg. 23 (2005) 3–9. [75] M. Eichler, R. Lavi, A. Shainberg, R. Lubart, Flavins are source of visible-light-in- duced free radical formation in cells, Lasers Surg. Med. 37 (2005) 314–319. [76] R. Lubart, R. Lavi, H. Friedmann, S. Rochkind, Photochemistry and photobiology of light absorption by living cells, Photomed. Laser Surg. 24 (2006) 179–185. [77] M. Eichler, R. Lavi, H. Friedmann, A. Shainberg, R. Lubart, Red light-induced redox reactions in cells observed with TEMPO, Photomed. Laser Surg. 25 (2007) 170–174. [78] J. Zhang, D. Xing, X. Gao, Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway, J. Cell. Physiol. 217 (2008) 518–528. [79] S. Wu, D. Xing, X. Gao, W.R. Chen, High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species, J. Cell. Physiol. 218 (2009) 603–611. [80] P.E. Hockberger, The discovery of the damaging effect of sunlight on bacteria, J. Photochem. Photobiol. B 58 (2000) 185–191. [81] C.C. Lai, T.P. Shih, W.C. Ko, H.J. Tang, P.R. Hsueh, Severe acute respiratory syn- drome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19), The epidemic and the challenges, Int. J. Antimicrob. Agents 55 (2020) 105924, https:// doi.org/10.1016/j.ijantimicag.2020.105924. [82] V.V. Bumah, E. Aboualizadeh, D. Masson-Meyers, J. Eells, C.S. Enwemeka, C. Hirschmugl, Resistance of B-DNA to blue light induced damage in methicillin- resistant Staphylococcus aureus, J. Photochem. Photobiol. B 167 (2017) 150–157. [83] P. Pang, N. Wang, C. Wang, Y. Yao, X. Fu, W. Yu, R. Cai, M. Yao, 460 nm visible light irradiation eradicates MRSA via inducing prophage activation, J. Photochem. Photobiol. B 166 (2017) 311–322. [84] Y.R. Guo, Q.D. Cao, Z.S. Hong, Y.Y. Tan, S.D. Chen, H.J. Jin, K.S. Tan, D.Y. Wang, Y. Yan, The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status, Mil. Med. Res. 7 (11) (2020) 1–10, https://doi.org/10.1186/s40779-020-00240-0. [85] F.M. de Lima, A.B. Villaverde, M.A. Salgado, H.C. Castro-Faria-Neto, E. Munin, R. Albertini, F. Aimbire, Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pul- monary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat, J. Photochem. Photobiol. B 101 (2010) 271–278. [86] R.A. Brochetti, M.P. Leal, R. Rodrgues, P.K. da Palma, L.V.F. de Oliveira, A.C.R.T. Horliana, A.S. Damazo, A.P.L. de Oliveira, R. Paula Vieira, A. Lino-Dos- Santos-Franco, Photobiomodulation therapy improves both inflammatory and fi- brotic parameters in experimental model of lung fibrosis in mice, Lasers Med. Sci. 32 (2017) 1825–1834. [87] A.A. de Brito, E.C. da Silveira, N.C. Rigonato-Liveira, S.S. Soares, M.A.R. Brandao- Rangel, C.R. Soares, T.G. Santos, C.E. Alves, K.Z. Herculano, R.P. Vieira, A. Lino- dos-Santos-Franco, R. Albertini, F. Aimbire, A.P. de Oliveira, Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis, Relevance to cytokines secretion from lung structural cells, J. Photochem. Photobiol. B 203 (2020) 111731, https://doi.org/10.1016/j. jphotobiol.2019.111731. [88] A.C.C. Aguiar, E. Murce, W.A. Cortopassi, A.S. Pimentel, M. Almeida, D.C.S. Barros, J.S. Guedes, M.R. Meneghetti, A.U. Krettli, Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity, Int. J. Parasitol. Drug Resist. 8 (2018) 459–464. [89] A. Savarino, J.R. Boelaert, A. Cassone, G. Majori, R. Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect. Dis. 3 (2003) 722–727. [90] M.J. Vincent, E. Bergeron, S. Benjannet, B.R. Erickson, P.E. Rollin, T.G. Ksiazek, N.G. Seidah, S.T. Nichol, Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol. J. 2 (2005) 69. [91] I.Z. Askenova, N.M. Burduli, Pathogenetic effects of low-intensity laser therapy for 6

PDF Image | Light as a potential treatment for pandemic coronavirus infections

light-as-potential-treatment-pandemic-coronavirus-infections-007

PDF Search Title:

Light as a potential treatment for pandemic coronavirus infections

Original File Name Searched:

covid-vs-light-therapy.pdf

DIY PDF Search: Google It | Yahoo | Bing

Cruise Ship Reviews | Luxury Resort | Jet | Yacht | and Travel Tech More Info

Cruising Review Topics and Articles More Info

Software based on Filemaker for the travel industry More Info

The Burgenstock Resort: Reviews on CruisingReview website... More Info

Resort Reviews: World Class resorts... More Info

The Riffelalp Resort: Reviews on CruisingReview website... More Info

CONTACT TEL: 608-238-6001 Email: greg@cruisingreview.com | RSS | AMP